The search functionality is under construction.

Author Search Result

[Author] Xin Li(43hit)

41-43hit(43hit)

  • A Novel Differential Evolution Algorithm Based on Local Fitness Landscape Information for Optimization Problems

    Jing LIANG  Ke LI  Kunjie YU  Caitong YUE  Yaxin LI  Hui SONG  

     
    PAPER-Core Methods

      Pubricized:
    2023/02/13
      Vol:
    E106-D No:5
      Page(s):
    601-616

    The selection of mutation strategy greatly affects the performance of differential evolution algorithm (DE). For different types of optimization problems, different mutation strategies should be selected. How to choose a suitable mutation strategy for different problems is a challenging task. To deal with this challenge, this paper proposes a novel DE algorithm based on local fitness landscape, called FLIDE. In the proposed method, fitness landscape information is obtained to guide the selection of mutation operators. In this way, different problems can be solved with proper evolutionary mechanisms. Moreover, a population adjustment method is used to balance the search ability and population diversity. On one hand, the diversity of the population in the early stage is enhanced with a relative large population. One the other hand, the computational cost is reduced in the later stage with a relative small population. The evolutionary information is utilized as much as possible to guide the search direction. The proposed method is compared with five popular algorithms on 30 test functions with different characteristics. Experimental results show that the proposed FLIDE is more effective on problems with high dimensions.

  • Investigation on Propagation Characteristics of PD-induced Electromagnetic Wave in T-Shaped GIS Based on FDTD Method

    Mingzhe RONG  Tianhui LI  Xiaohua WANG  Dingxin LIU  Anxue ZHANG  

     
    PAPER

      Vol:
    E97-C No:9
      Page(s):
    880-887

    When ultra-high-frequency (UHF) method is applied in partial discharge (PD) detection for GIS, the propagation process and rules of electromagnetic (EM) wave need to be understood clearly for conducting diagnosis and assessment about the real insulation status. The preceding researches are mainly concerning about the radial component of the UHF signal, but the propagation of the signal components in axial and radial directions and that perpendicular to the radial direction of the GIS tank are rarely considered. So in this paper, for a 252,kV GIS with T-shaped structure (TS), the propagation and attenuation of PD-induced EM wave in different circumferential angles and directions are investigated profoundly in time and frequency domain based on Finite Difference Time Domain (FDTD) method. The attenuation rules of the peak to peak value (Vpp) and cumulative energy are concluded. By comparing the results of straight branch and T branch, the influence of T-shaped structure over the propagation of different signal components are summarized. Moreover, the new circumferential and axial location methods proposed in the previous work are verified to be still applicable. This paper discusses the propagation mechanism of UHF signal in T-shaped tank, which provides some referential significance towards the utilization of UHF technique and better implementation of PD detection.

  • Inverse Distance Weighting Method Based on a Dynamic Voronoi Diagram for Thermal Reconstruction with Limited Sensor Data on Multiprocessors

    Xin LI  Mengtian RONG  Tao LIU  Liang ZHOU  

     
    PAPER-Electronic Components

      Vol:
    E94-C No:8
      Page(s):
    1295-1301

    With exponentially increasing power densities due to technology scaling and ever increasing demand for performance, chip temperature has become an important issue that limits the performance of computer systems. Typically, it is essential to use a set of on-chip thermal sensors to monitor temperatures during the runtime. The runtime thermal measurements are then employed by dynamic thermal management techniques to manage chip performance appropriately. In this paper, we propose an inverse distance weighting method based on a dynamic Voronoi diagram for the reconstruction of full thermal characterization of integrated circuits with non-uniform thermal sensor placements. Firstly we utilize the proposed method to transform the non-uniformly spaced samples to virtual uniformly spaced data. Then we apply three classical interpolation algorithms to reconstruct the full thermal signals in the uniformly spaced samples mode. To evaluate the effectiveness of our method, we develop an experiment for reconstructing full thermal status of a 16-core processor. Experimental results show that the proposed method significantly outperforms spectral analysis techniques, and can obtain full thermal characterization with an average absolute error of 1.72% using 9 thermal sensors per core.

41-43hit(43hit)